Новые способы получения стали изобрел. Всё, что изготавливают из стали, можно найти на портале. Что производят из прочнейшего материала

Булат (сталь) - откуда он появился и кто его использовал

Первые сведения о булате поступили 2300 лет тому назад от участников знаменитого похода Александра Македонского в Индию. Воины рассказывали, что клинки индийцев рубят камни и рассекают в воздухе легкие ткани.

Возможно, именно эти сведения использовал в своем романе "Талисман" Вальтер Скотт. Он описывает состязание в ловкости между султаном Саладином и английским королем Ричардом Львиное Сердце. Ричард своим стальным мечом разрубил на две части копье одного из рыцарей. В ответ Саладин подбросил в воздух покрывало из тончайшей ткани и рассек его своим булатным клинком.

Булат действительно впервые появился в Индии. Индусы продавали в страны Востока вутцы - "хлебцы" из стали. Они представляли собою плоские лепешки диаметром 12,5 см и толщиной 0,25 см. Весили вутцы около 900 грамм. Такой "хлебец" разрубался пополам, на равные части, чтобы покупатель мог рассмотреть строение металла.

Искусством обработки стали индийские мастера владели в совершенстве. "Никогда не будет народа, который лучше бы разбирался в отдельных видах мечей и в их названиях, чем жители Индии", - писал Бируни, увидевший воочию производство стали и мечей. Особенно поразили его цветные мечи. Отполированное железо индийцы натирали раскаленным порошком медного купороса, после чего получали мечи различных цветов - зеленые, синие, белые и с узорами. Среди множества индийских мечей наиболее глубокое впечатление произвел на Бируни меч под названием "маджли", на котором были изображены животные и деревья. Стоимость его равнялась цене лучшего слона. Но если на мече изображались человеческие фигуры, такое оружие стоило еще дороже.

Узоры, рисунки на металле были главной отличительной особенностью булатных мечей. Нa одних булатах узоры были видны невооруженным глазом сразу после полировки. На других они появлялись только после травления соком растений. Узор мог быть крупным и мелким.

Другим местом, где производили отличные булаты, стал город Дамаск. В средние века из Дамаска мечи поступали в разные страны. Их можно было увидеть даже в африканских племенах. Булатная сталь позже стала называться дамасской.

Как удавалось людям средневековья создавать из нержавеющей стали, необычайно прочной, булатные клинки, было загадкой. Разные ученые во многих странах пытались разгадать тайну булата. Знаменитый английский физик Михаил Фарадей пытался получить булат путем добавки к стали алюминия и платины.

В конце концов, тайна булатной стали была раскрыта уральским металлургом Павлом Аносовым. После долгих лет поисков, проб и ошибок, в 1837 году ему удалось изготовить в городе Златоусте булатный клинок. Аносову было известно, что в Москве в XVI-XVII веках еще существовало производство булатов. Он был знаком с документами той поры, где встречались записи: "Сабельная полоса, булат синий, московский выков", "сабля полоса русская с долами на булатное дело". К концу XVII века искусство изготовления булата, пришло в упадок и постепенно забылось. И вот спустя двести с лишним лет в Златоусте появился булат. "Полоска булата сгибалась без малейшего повреждения, издавала чистый и высокий звон. Отполированный конец крошил лучшие английские зубила, тогда как отпущенный - легко принимал впечатления и отсекался чисто и ровно", - писал Аносов в "Горном журнале".

Уготовленный в Златоусте булатный клинок был золотистого отлива и с крупным сетчатым или коленчатым узором. Знатоки считали, что такой узор - признак высшего сорта булата. Сделанный на Златоустовской фабрике клинок разрубал гвозди и кости, не повреждая лезвие. С помощью этих клинков можно было проделать тот же фокус с тонким газовым покрывалом, которым поразил Саладин короля Ричарда.

Люди так долго бились над загадкой булата, что были крайне удивлены, когда Аносов сообщил, что булатная сталь представляет собою "железо и углерод и ничего более; все дело в чистоте исходных материалов, в методе охлаждения, в кристаллизации".

Булат и в самом деле оказался высокоуглеродистой сталью без каких-либо особых примесей, являясь продуктом естественной кристаллизации стали, полученной при соединении железа и углерода. Сущность образования булата заключалась в насыщении сплава большим количеством углерода (около 1,3-1,5%). При медленном охлаждении образовывалось и находилось в некотором излишке соединение железа с углеродом - так называемый цементит, который не растворялся, как бывает в обычной стали, а оставался в железе как бы во взвешенном состоянии. Прослойки цементита обволакивались медленно стынущим мягким железом. Поэтому при высоком содержании углерода, придающим металлу твердость, булат сохраняет высокую гибкость, упругость, не свойственную обыкновенной стали. Из-за наличия прослоек хрупкого цементита ковка булата должна производиться крайне осторожно, ударами легкого молота, с многократным нагреванием до критической температуры, то есть, до температуры красного каления. Если ее поднять выше, булат потеряет свои основные свойства и свой характерный рисунок. Процесс изготовления булата отличается трудоемкостью, длительностью и требует высокого искусства.

Во время разработки процесса производства булата, Аносов попутно изобрел новый способ получения стали путем сплавления негодных к употреблению железных и стальных обсечков в глиняных горшках, то есть тиглях, при помощи высокой температуры воздушных печей. Наладив на Урале производство тигельной стали, Аносов сообщил, что она ни в чем не уступает английской литой стали.

В наше время булатная сталь не производится. Дело в том, что она была продуктом ремесленного кустарного производства, и имела в общем-то единственное применение - для изготовления холодного оружия. Зато современная техника нашла много способов получения стали самых разнообразных марок с различными свойствами, которыми не обладала булатная сталь. Современной технике нужны металлы и сплавы для работы при давлении в сотни и тысячи атмосфер и при глубоком вакууме, когда давление близко к нулю. Хладостойкие стали должны сохранять прочность при температурах, близких к абсолютному нулю (-273°С). Для атомных реакторов нужен металл с наибольшей магнитопроводимостью, для двигателей реактивных самолетов и ракет - сталь, способная сохранять прочность при очень высоких температурах и большой нагрузке.


Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

Расплавление породы

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием - оксидом кальция (CaO) - распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Раскисление металла

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном;
  • сосуды конверторов и их несущие кольца;
  • оборудование для фильтрации пыли;
  • система для удаления конверторного газа.

Участок электропечей:

  • печи индукционного типа;
  • дуговые печи;
  • емкости, с помощью которых выполняется загрузка;
  • участок складирования металлического лома;
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

  • LF-оборудование;
  • SL-оборудование.

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей;
  • ковши литейного и разливочного типа;
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами;
  • оборудование для осуществления непрерывной разливки;
  • вагонетки, на которых транспортируются промежуточные ковши;
  • лотки и сосуды, предназначенные для аварийных ситуаций;
  • промежуточные ковши и площадки для складирования;
  • пробочный механизм;
  • мобильные мешалки для чугуна;
  • оборудование для обеспечения охлаждения;
  • участки, на которых выполняется непрерывная разливка;
  • внутренние транспортные средства рельсового типа.
Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

Когда говорят «стальной характер», имеют в виду твёрдость и решительность, надёжность и мужественность. Сплав железа с углеродом сегодня служит символом лучших качеств, которые приписывают не только вещам, но и людям. Различают два вида:

  • легированную;
  • углеродистую.

Принята также классификация по качеству. Бывают сплавы обычные и качественные а также повышенного качества и самые лучшие высококачественные.

Что производят из прочнейшего материала

Первородная сталь впервые была произведена у кельтов. Произошло это около 200 г. до нашей эры. Технология тогдашнего производства состояла в следующем: кованное железо разрезалось на тонкие полоски, которые укладывались в контейнер, в котором уже находились обожжённые кости и уголь. Контейнер вместе со всем содержимым нагревался и оставался в печи, в которой поддерживали сильный огонь, около 10-12 часов. В результате этого длительного и трудоёмкого процесса поверхность металла обогащалась углеродом.

Первыми орудиями, которые производили из стали, были ножи. Листы соединяли между собой и обрабатывали для получения определённой формы. Очень долгое время рецепт изготовления прочного сплава был засекреченным и передавался из уст в уста только посвящённым. С тех пор сталь далеко ушла в своём усовершенствовании. Изделия из стали можно встретить в каждом доме.

Большим прорывом стало изобретение в XX веке нержавейки. Этот продукт производства нашёл применение во многих сферах промышленности и в быту. Проще сказать, где его не применяют. Наиболее распространёнными и востребованными видами стальной продукции являются:

  • металлопрокат;
  • украшения;
  • инструменты;
  • посуда;
  • детали для станков и транспорта и т.д.

Высокая востребованность материала базируется на его удивительных свойствах. Это и прочность, и коррозийная стойкость, и теплопроводность, и электропроводность и т.д. Различные виды сплава могут характеризоваться различными качествами.

Где купить стальные изделия высокого качества

Как говорилось выше, существуют различные классификации сплава, одна из них основывается на его качестве. Оно должно соответствовать назначению того, что изготавливают. Большой ассортимент стальных изделий предлагает бизнес-портал All.biz. На ресурсе располагаются запчасти, инструменты, покат и многое другое. Тут http://www.kz.all.biz/ есть всё, что производится у нас и за рубежом. Поисковик настроен так, что можно найти всё необходимое. Особенно привлекают цены.

Сталь — отнюдь не изобретение Нового времени. Способ ее получения был известен уже за 1000 лет до 11.14.1. i.i нашей эры. Однако до XIX в. сталь практически не испотьзовалась. поскольку ее производство было слишком сложным и дорогим. Быстрым и доступным оно стало лишь посте того, как Генри Бессемер изобрел в 1856 г. названный его именем конвертер.

Что делает сталь прочной?

В быту мы часто называем сталь железом. Однако железо — лишь исходный материал. Получают его из железной руды. В Европе выплавлять жстезо из руды первыми начали кельты около VII в. до н.э. Для этого руду нагревали в пламени древесного угля при усиленной подаче воздуха. Таким образом получается твердый, но хрупкий чугун с высоким содержанием углерода. Однако чугун не годится для ковки. Сталью называется сплав, в котором содержание углерода непревышает 2%. Ему можно ковкой и штамповкой придавать различные формы. Физические свойства стали зависят от метода охлаждения. Если охлаждать сплав медленно, он будет упругим и пластичным, при быстром охлаждении — твердым и хрупким.

Новые методы производства стали

Содержание углерода и других нежелательных примесей снижается так называемым фришеванием. Для этого чугун необходимо снова нагреть до жидкого состояния. С 1784 г. это делается в пудлинговой печи, нагреваемой каменным утлем. Чугун плавят на поду до тестообразного состояния, постоянно помешивая металлическими штангами для увеличения доступа кисторода. Бессемер усовершенствовал этот процесс, построив доменную печь: сквозь массу бедного фосфором чугуна продувался сжатый воздух, способствуя процессам окисления. Конвертер Бессемера выдавал за 20 минут столько же стали, сколько пудлинговая печь за целый день. На сходном принципе основан и изобретенный в 1864 г. мартеновский процесс. Позже появились кистородные конвертеры и электрические печи для выплавки стали.

1742 г.: Бенджамин Хантсман начал выплавлять сталь не в открытой печи с древесным углем, а в нагреваемом тигле.

1878 г.: Сидни Гилкрист Томас изобрел «томасовский процесс» для Удаления фосфорных примесей из железной руды в процессе плавки.

1952 г.: в Австрии начал работу первый в мире сталелитейный завод на основе ЛД-процесса. Имеющиеся в чугуне примеси удаляются в таком конвертере продувкой техническим кислородом.

Сталь. Виды и марки стали. Их применение.

Сталь - это сплав железа и углерода с другими элементами, содержание углерода в нём не более 2,14%.

Наиболее общая характеристика - по химическому составу сталь различают:

    углеродистую сталь (Fe – железо, C – углерод, Mn – марганец, Si - кремний, S – сера, P – фосфор). По содержанию углерода делится на низкоуглеродистую, среднеуглеродистую и высокоуглеродистую. Углеродистая сталь предназначена для статически нагруженного инструмента.

По способу производства и содержанию примесей сталь различается:

        сталь обыкновенного качества (углерода менее 0,6%) - соответствует ГОСТ 14637, ГОСТ 380-94. Ст0, Ст1, Ст2, Ст3, Ст4, Ст5,Ст6. Буквы «Ст» обозначают сталь обыкновенного качества, цифры указывают на номер маркировки в зависимости от механических свойств. Является наиболее дешёвой сталью, но уступает по другим качествам.

        качественная сталь (углеродистая или легированная) - ГОСТ 1577, содержание углерода обозначается в сотых долях % - 08, 10, 25, 40, дополнительно может указываться степень раскисления и характер затвердевания. Качественная углеродистая сталь обладает высокой пластичностью и повышенной свариваемостью.

        Низкоуглеродистые качественные конструкционные стали характеризуются невысокой прочностью и высокой пластичностью. Из листового проката стали 08, 10, 08кп изготавливают детали для холодной штамповки. Из сталей 15, 20 делают болты, винты, гайки, оси, крюки,шпильки и другие детали неответственного назначения.

Среднеуглеродистые качественные стали (ст 30, 35, 40, 45, 50, 55) используют после нормализации и поверхностной закалки для изготовления таких деталей, которые обладают высокой прочностью и вязкостью сердцевины (оси, винты, втулки и т. д.)

Стали 60 - стали 85 обладают высокой прочностью, износостойкостью, упругими свойствами. Из них изготавливают крановые колёса, прокатные валки, клапаны компрессоров, пружины, рессоры и т.д.

        высококачественная - сложный химический состав с пониженным содержанием фосфора и серы - по ГОСТу 19281.

Также сталь делится по применению :

а) строительная сталь - углеродистая обыкновенного качества. Обладает отличной свариваемостью. Цифра обозначает условный номер состава стали по ГОСТу. Чем больше условный номер, тем больше содержание углерода, тем выше прочность стали и ниже пластичность.

Ст0-3 - для вторичных элементов конструкций и неответственных деталей (настилы, перила, подкладка,шайбы)

Ст3 используют для несущих и ненесущих элементов сварных и несварных конструкций и деталей, которые работают при положительных температурах. ГОСТ 380-88.

Стандартом качества предусмотрена сталь с повышенным количеством марганца (Ст3Гсп/пс, ст5Гсп/пс).

б) конструкционная сталь - ГОСТ 1050

Углеродистые качественные конструкционные стали используются в машиностроении, для сварных, болтовых конструкций, для кровельных работ, для изготовления рельсов, железнодорожных колёс, валов, шестерен и других деталей грузоподъёмников.Ц ифры в маркировке означают содержание углерода в десятых долях процента.

Ст20 - малонагруженные детали, такие как валики, копиры, упоры,

Ст35 - испытывающие небольшие напряжения (оси, тяги, рычаги, диски, траверсы, валы),

Ст45 (ст40Х) - требующие повышенной прочности (валы, муфты, оси, зубчатые рейки)

Конструкционные легированные стали используют для гусениц тракторов, изготовления пружин, рессор, осей, валов, автомобильных деталей, деталей турбин и др.

в) инструментальная сталь - применяется для режущего инструмента, быстрорежущая сталь для холодного и горячего деформирования материла, для измерительных инструментов, на производство молотков, долот, стамесок, резцов, свёрлов, напильников, бритв, рашпилей.

У7, У8А (цифра- десятые доли процента по содержанию углерода). Углеродистые стали выпускают качественными и высококачественными. Буква «А» означает высококачественную углеродистую инструментальную сталь.

г) легированная сталь - универсальная сталь, содержащая специальную примесь. Содержание кремния более 0,5%, марганца более 1%. ГОСТ 19281-89. Если содержание легирующего элемента превышает 1 - 1,5%, то оно указывается цифрой после соответствующей буквы.

    низколегированная сталь - где легирующих элементов до 2,5% (09Г2С, 10ХСНД, 18ХГТ). Низколегированную сталь можно использовать в условиях крайнего севера, от -70 град С. Низколегированную сталь отличает большая прочность за счёт более высокого предела текучести,что важно для ответственных конструкций.

    среднелегированная (2,5 -10%),

    высоколегированная (от 10 до 50%)

Сталь 09Г2С применяется для паровых котлов, аппаратов и ёмкостей, работающих под давлением и температурой от минус 70, до плюс 450град; её используют для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении.

Сталь 10ХСНД используют для сварных конструкций химического машиностроения, фасонных профилей в сдостроении, вагоностроении.

18ХГТ применяют для деталей, работающих на больших скоростях при высоком давлении и ударных нагрузках.

д) сталь особого назначения - сталь с особыми физическими свойствами. Она применяется в электротехничсеской промышленности и точном судостроении.

На свариваемость стали влияет степень её раскисления. По степени раскисления сталь классифицируется:

    спокойная сталь (ст3сп) - полностью раскисляется с минимальным содержанием шлаком и неметаллических примесей,

    полуспокойная сталь (ст3пс) - по характеристикам качества схожа со спокойной сталью,

    кипящая сталь (08кп) - неокисленная сталь с высоким содержанием неметаллических примесей. ГОСТ 1577.

В зависимости от нормируемых характеристик , сталь подразделяют на категории: 1, 2, 3, 4, 5. Категории обозначают химический состав, механические свойства при растяжении, ударную вязкость)

Марки стали

Марка стали С245 - Ст3пс5

Марка стали С255 - Ст3сп5

Марка стали С235 - Ст3кп2

Марка стали С345 - 09Г2С